Thursday, December 24, 2020

Part 2: The Invisible Rainbow...The Road not Taken...Chronic Electrical Illness...The Behavior of Plants

The Invisible Rainbow

A History of Electricity and Life

by Arthur Firstenberg

4  

The Road not Taken

DURING THE 1790s, European science faced an identity crisis. For centuries, philosophers had been speculating about the nature of four mysterious substances that animated the world. They were light, electricity, magnetism, and caloric (heat). Most thought the four fluids were somehow related to one another, but it was electricity that was most obviously connected with life. Electricity alone breathed motion into nerves and muscles, and pulsations into the heart. Electricity boomed from the heavens, stirred winds, tossed clouds, pelted the earth with rain. Life was movement, and electricity made things move. 

Electricity was “an electric and elastic spirit” by which “all sensation is excited, and the members of animal bodies move at the command of the will, namely, by the vibrations of this spirit, mutually propagated along the solid filaments of the nerves, from the outward organs of sense to the brain, and from the brain into the muscles.”1 So spoke Isaac Newton in 1713, and for the next century few disagreed.

Electricity was: “an element that is to us more intimate than the very air that we breathe.”... Abbé Nollet, 1746

“the principle of animal functions, the instrument of will and the vehicle of sensations.”... French physicist Marcelin Ducarla-Bonifas, 1779 3 

“that fire necessary to all bodies and which gives them life… that is both attached to known matter and yet apart from it.”... Voltaire, 1772 4 

“one of the principles of vegetation; it’s what fertilizes our fields, our vines, our orchards, and what brings fecundity to the depths of the waters.” Jean-Paul Marat, M.D.,.. 1782 5 

“the Soul of the Universe” that “produces and sustains Life throughout all Nature, as well in Animals as in Vegetables”... John Wesley, founder of the Methodist Church, 1760.6 

Then came Luigi Galvani’s stunning announcement that simply touching a brass hook to an iron wire would cause a frog’s leg to contract. A modest professor of obstetrics at the Institute of Sciences of Bologna, Galvani thought this proved something about physiology: each muscle fiber must be something like an organic Leyden jar. The metallic circuit, he reasoned, released the “animal electricity” that was manufactured by the brain and stored in the muscles. The function of the nerves was to discharge that stored electricity, and the dissimilar metals, in direct contact with the muscle, somehow mimicked the natural function of the animal’s own nerves. 

But Galvani’s countryman, Alessandro Volta, held an opposing, and at that time heretical opinion. The electric current, he claimed, came not from the animal, but from the dissimilar metals themselves. The convulsions, according to Volta, were due entirely to the external stimulus. Furthermore, he proclaimed, “animal electricity” did not even exist, and to try to prove it he made his momentous demonstration that the electric current could be produced by the contact of different metals alone, without the intervention of the animal. 

The combatants represented two different ways of looking at the world. Galvani, trained as a physician, sought his explanations in biology; the metals, to him, were an adjunct to a living organism. Volta, the self-taught physicist, saw precisely the opposite: the frog was only an extension of the non-living metallic circuit. For Volta, the contact of one conductor with another was a sufficient cause, even for the electricity within the animal: muscles and nerves were nothing more than moist conductors, just another kind of an electric battery.

Their dispute was a clash not just between scientists, not just between theories, but between centuries, between mechanism and spirit, an existential struggle that was ripping the fabric of western civilization in the late 1790s. Hand weavers were shortly to rise in revolt against mechanical looms, and they were destined to lose. The material, in science as in life, was displacing and obscuring the vital. 

Volta, of course, won the day. His invention of the electric battery gave an enormous boost to the industrial revolution, and his insistence that electricity had nothing to do with life also helped steer its direction. This mistake made it possible for society to harness electricity on an industrial scale—to wire the world, even as Nollet had envisioned—without worrying about the effects such an enterprise might have on biology. It permitted people to begin to disregard the accumulated knowledge gained by eighteenth century electricians. 

Eventually, one learns if one reads the textbooks, Italian physicists Leopoldo Nobili and Carlo Matteucci, and then a German physiologist named Emil du Bois-Reymond, came along and proved that electricity did after all have something to do with life, and that nerves and muscles were not just moist conductors. But the mechanistic dogma was already entrenched, resisting all attempts to properly restore the marriage between life and electricity. Vitalism was permanently relegated to religion, to the realm of the insubstantial, divorced forever from the domain of serious investigative science. The life force, if it existed, could not be subjected to experiment, and it certainly could not be the same stuff that turned electric motors, lit light bulbs, and traveled thousands of miles on copper wires. Yes, electricity had finally been discovered in nerves and muscles, but its action was only a by-product of the journeys of sodium and potassium ions across membranes and the flight of neurotransmitters across synapses. Chemistry, that was the thing, the fertile, seemingly endless scientific soil that nurtured all biology, all physiology. Long-range forces were banished from life. 

The other, even more significant change that occurred after 1800 is that gradually people even forgot to wonder what the nature of electricity was. They began to build a permanent electrical edifice, whose tentacles snaked everywhere, without noticing, or thinking about, its consequences. Or, rather, they recorded its consequences in minute detail without ever making the connection to what they were building.

5

Chronic Electrical Illness

IN 1859, THE CITY of London underwent an astonishing metamorphosis. A tangle of electric wires, suddenly and inescapably, was brought to the streets, shops, and residential rooftops of its two and a half million inhabitants. I will let one of the most famous English novelists, who was an eyewitness, begin the story. 

“About twelve years ago,” wrote Charles Dickens, “when the tavern fashion of supplying beer and sandwiches at a fixed price became very general, the proprietor of a small suburban pothouse reduced the system to an absurdity by announcing that he sold a glass of ale and an electric shock for fourpence. That he really traded in this combination of science and drink is more than doubtful, and his chief object must have been to procure an increase of business by an unusual display of shopkeeping wit. Whatever motive he had to stimulate his humor, the fact should certainly be put upon record that he was a man considerably in advance of his age. He was probably not aware that his philosophy in sport would be made a science in earnest in the space of a few years, any more than many other bold humorists who have been amusing on what they know nothing about. The period has not yet arrived when the readers of Bishop Wilkin’s famous discourse upon aerial navigation will be able to fly to the moon, but the hour is almost at hand when the fanciful announcement of the beer shop keeper will represent an everyday familiar fact. A glass of ale and an electric shock will shortly be sold for fourpence, and the scientific part of the bargain will be something more useful than a mere fillip to the human nerves. It will be an electric shock that sends a message across the house-tops through the web of wires to any one of a hundred and twenty district telegraph stations, that are to be scattered amongst the shopkeepers all over the town. 

“The industrious spiders have long since formed themselves into a commercial company, called the London District Telegraph Company (limited), and they have silently, but effectively, spun their trading web. One hundred and sixty miles of wire are now fixed along parapets, through trees, over garrets, round chimney-pots, and across roads on the southern side of the river, and the other one hundred and twenty required miles will soon be fixed in the same manner on the northern side. The difficulty decreases as the work goes on, and the sturdiest Englishman is ready to give up the roof of his castle in the interests of science and the public good, when he finds that many hundreds of his neighbors have already led the way.” 

English citizens did not necessarily welcome the prospect of electric wires being attached to their homes. “The British householder has never seen a voltaic battery kill a cow,” wrote Dickens, “but he has heard that it is quite capable of such a feat. The telegraph is worked, in most cases, by a powerful voltaic battery, and therefore the British householder, having a general dread of lightning, logically keeps clear of all such machines.” Nonetheless, Dickens tells us, the agents of the London District Telegraph Company persuaded nearly three thousand five hundred property owners to lend their rooftops as resting places for the two hundred and eighty miles of wires that were crisscrossing all of London, and that were shortly to drop into the shops of grocers, chemists, and tavern-keepers all over the city. 1 

A year later, the electrical web above London homes became even more densely woven when the Universal Private Telegraph Company opened its doors. In contrast to the first company, whose stations accepted only public business, Universal rented telegraph facilities to individuals and businesses for private use. Cables containing up to a hundred wires each formed the backbone of the system, each wire departing from its companions at the nearest approach to its destination. By 1869, this second company had strung more than two thousand five hundred miles of cable, and many times as much wire over the heads and under the feet of Londoners, to serve about fifteen hundred subscribers scattered throughout the city. 

A similar transformation was occurring more or less everywhere in the world. The rapidity and intensity with which this happened is not appreciated today. 

The systematic electrification of Europe had begun in 1839 with the opening of the magnetic telegraph on the Great Western Railway between West Drayton and London. The electrification of America began a few years later, when Samuel Morse’s first telegraph line marched from Baltimore to Washington in 1844 along the Baltimore and Ohio Railroad. Even earlier, electric doorbells and annunciators began decorating homes, offices, and hotels, the first complete system having been installed in 1829 in Boston’s Tremont House, where all hundred and seventy guest rooms were connected by electric wires to a system of bells in the main office. 

Electric burglar alarms were available in England by 1847, and soon afterwards in the United States. 

By 1850, telegraph lines were under construction on every continent except Antarctica. Twenty-two thousand miles of wire had been energized in the United States; four thousand miles were advancing through India, where “monkeys and swarms of large birds” were alighting on them”2 ; one thousand miles of wire were spreading in three directions from Mexico City. By 1860, Australia, Java, Singapore, and India were being joined undersea. By 1875, thirty thousand miles of submarine cable had demolished oceanic barriers to communication, and the tireless weavers had electrified seven hundred thousand miles of copper web over the surface of the earth—enough wire to encircle the globe almost thirty times. 

And the traffic of electricity accelerated even more than the number of wires, as first duplexing, then quadriplexing, then automatic keying meant that current flowed at all times—not just when messages were being sent—and that multiple messages could be sent over the same wire at the same time, at a faster and faster rate. 

Almost from the beginning, electricity became a presence in the average urban dweller’s life. The telegraph was never just an adjunct to railroads and newspapers. In the days before telephones, telegraph machines were installed first in fire and police stations, then in stock exchanges, then in the offices of messenger services, and soon in hotels, private businesses, and homes. The first municipal telegraph system in New York City was built by Henry Bentley in 1855, connecting fifteen offices in Manhattan and Brooklyn. The Gold and Stock Telegraph Company, incorporated in 1867, supplied instantaneous price quotations from the Stock, Gold, and other Exchanges telegraphically to hundreds of subscribers. In 1869, the American Printing Telegraph Company was created to provide private telegraph lines to businesses and individuals. The Manhattan Telegraph Company was organized in competition two years later. By 1877, the Gold and Stock Telegraph Company had acquired both those companies and was operating 1,200 miles of wire. By 1885, the industrious spiders linking almost thirty thousand homes and businesses had to spin webs over New York even more intricate than the ones over Dickens’ London. 

In the midst of this transformation, a slender, slightly deaf clergyman’s son wrote the first clinical histories of a previously unknown disease that he was observing in his neurology practice in New York City. Dr. George Miller Beard was only three years out of medical school. Yet his paper was accepted and published, in 1869, in the prestigious Boston Medical and Surgical Journal, later renamed the New England Journal of Medicine.

A self-assured young man, possessed of a serenity and hidden sense of humor that attracted people to him, Beard was a sharp observer who, even so early in his career, was not afraid to break new medical ground. Although he was sometimes ridiculed by his elders for his novel ideas, one of his colleagues was to say many years after his death that Beard “never said an unkind word against anyone.”3 Besides this new disease, he also specialized in electrotherapy and hypnotherapy, both of which he was instrumental in restoring to good repute, half a century after the death of Mesmer. In addition, Beard contributed to the knowledge of the causes and treatment of hay fever and seasickness. And in 1875 he collaborated with Thomas Edison in investigating an “etheric force” that Edison had discovered, which was able to travel through the air, causing sparks in nearby objects without a wired circuit. Beard correctly surmised, a decade before Hertz and two decades before Marconi, that this was high frequency electricity, and that it might one day revolutionize telegraphy. 4 

George Miller Beard, M.D. (1839-1883) 

As far as the new disease that he described in 1869, Beard did not guess its cause. He simply thought it was a disease of modern civilization, caused by stress, that was previously uncommon. The name he gave it, “neurasthenia,” just means “weak nerves.” Although some of its symptoms resembled other diseases, neurasthenia seemed to attack at random and for no reason and no one was expected to die from it. Beard certainly didn’t connect the disease with electricity, which was actually his preferred treatment for neurasthenia—when the patient could tolerate it. When he died in 1883, the cause of neurasthenia, to everyone’s frustration, had still not been identified. But in a large portion of the world where the term “neurasthenia” is still in everyday use among doctors—and the term is used in most of the world outside of the United States —electricity is recognized today as one of its causes. And the electrification of the world was undoubtedly responsible for its appearance out of nowhere during the 1860s, to become a pandemic during the following decades. 

Today, when million-volt power lines course through the countryside, twelve-thousand-volt lines divide every neighborhood, and sets of thirty-ampere circuit breakers watch over every home, we tend to forget what the natural situation really is. None of us can begin to imagine what it would feel like to live on an unwired earth. Not since the presidency of James Polk have our cells, like puppets on invisible strings, been given a second’s rest from the electric vibrations. The gradual increase in voltage during the past century and a half has been only a matter of degree. But the sudden overwhelming of the earth’s own nurturing fields, during the first few decades of technological free-for-all, had a drastic impact on the very character of life. 

In the earliest days telegraph companies, in countryside and in cities, built their lines with only one wire, the earth itself completing the electric circuit. None of the return current flowed along a wire, as it does in electrical systems today; all of it traveled through the ground along unpredictable paths. 

Twenty-five-foot-high wooden poles supported the wires on their journeys between towns. In cities, where multiple telegraph companies competed for customers and space was at a premium, forests of overhead wires tangled their way between housetops, church steeples, and chimneys, to which they attached themselves like vines. And from those vines hung electric fields that blanketed the streets and byways and the spaces within the homes to which they clung. 

The historical numbers provide a clue to what happened. According to George Prescott’s 1860 book on the Electric Telegraph, a typical battery used for a 100-mile length of wire in the United States was “fifty cups of Grove,” or fifty pairs of zinc and platinum plates, which provided an electric potential of about 80 volts.5 In the earliest systems, the current only flowed when the telegraph operator pressed the sending key. There were five letters per word and, in the Morse alphabet, an average of three dots or dashes per letter. Therefore, if the operator was proficient and averaged thirty words per minute, she pressed the key at a rhythm of 7.5 strokes per second. This is the very near the fundamental resonant frequency (7.8 Hz) of the biosphere, to which all living things, as we will see in chapter 9, are tuned, and whose average strength—about a third of a millivolt per meter—is given in textbooks. It is easy to calculate, using these simple assumptions, that the electric fields beneath the earliest telegraph wires were up to 30,000 times stronger than the natural electric field of the earth at that frequency. In reality the rapid interruptions in telegraph keying also produced a wide range of radio frequency harmonics, which also traveled along the wires and radiated through the air. 

The magnetic fields can also be estimated. Based on the values for electrical resistance for wires and insulators as given by Samuel Morse himself,6 the amount of current on a typical long-distance wire varied from about 0.015 ampere to 0.1 ampere, depending on the length of the line and the weather. Since the insulation was imperfect, some current escaped down each telegraph pole into the earth, a flow which increased when it rained. Then, using the published value of 10-8 gauss for the magnetic field of the earth at 8 Hz, one may calculate that the magnetic field from a single early telegraph wire would have exceeded the earth’s natural magnetic field at that frequency for a distance of two to twelve miles on either side of the line. And since the earth is not uniform, but contains underground streams, iron deposits, and other conductive paths over which the return current would travel, exposure of the population to these new fields varied widely. 

In cities, each wire carried about 0.02 ampere and exposure was universal. The London District Telegraph Company, for example, commonly had ten wires together, and the Universal Private Telegraph Company had up to one hundred wires together, strung above the streets and rooftops over a large part of town. Although the apparatus and alphabet of London District differed from those used in America, the current through its wires fluctuated at a similar rate—about 7.2 vibrations per second if the operator transmitted 30 words per minute.7 And Universal’s dial telegraph was a hand-cranked magneto-electric machine that actually sent alternating current through the wires. 

One enterprising scientist, professor of physics John Trowbridge at Harvard University, decided to put to the test his own conviction that signals riding on telegraph wires that were grounded at both ends were escaping from their appointed paths and could easily be detected at remote locations. His test signal was the clock at the Harvard Observatory, which transmitted time signals four miles by wire from Cambridge to Boston. His receiver was a newly-invented device—a telephone—connected to a length of wire five hundred feet long and grounded to the earth at both ends. Trowbridge found that by tapping the earth in this way he could clearly hear the ticking of the observatory clock up to a mile from the observatory at various points not in the direction of Boston. The earth was being massively polluted with stray electricity, Trowbridge concluded. Electricity originating in the telegraph systems of North America should even be detectable on the other side of the Atlantic Ocean, he said after doing some calculations. If a powerful enough Morse signal, he wrote, were sent from Nova Scotia to Florida over a wire that was grounded at both ends, someone on the coast of France should be able to hear the signal by tapping the earth using his method. 

A number of historians of medicine who have not dug very deep have asserted that neurasthenia was not a new disease, that nothing had changed, and that late nineteenth and early twentieth century high society was really suffering from some sort of mass hysteria.8 

A list of famous American neurasthenic reads like a Who’s Who of literature, the arts, and politics of that era. They included Frank Lloyd Wright, William, Alice and Henry James, Charlotte Perkins Gilman, Henry Brooks Adams, Kate Chopin, Frank Norris, Edith Wharton, Jack London, Theodore Dreiser, Emma Goldman, George Santayana, Samuel Clemens, Theodore Roosevelt, Woodrow Wilson, and a host of other well-known figures. 

Historians who think they have found neurasthenia in older textbooks have been confused by changes in medical terminology, changes that have prevented an understanding of what happened to our world a hundred and fifty years ago. For example, the term “nervous” was used for centuries without the connotations given to it by Freud. It simply meant, in today’s language, “neurological.” George Cheyne, in his 1733 book, The English Malady, applied the term “nervous disorder” to epilepsy, paralysis, tremors, cramps, contractions, loss of sensation, weakened intellect, complications of malaria, and alcoholism. Robert Whytt’s 1764 treatise on “nervous disorders” is a classic work on neurology. It can be confusing to see gout, tetanus, hydrophobia, and forms of blindness and deafness called “nervous disorders” until one realizes that the term “neurological” did not replace “nervous” in clinical medicine until the latter half of the nineteenth century. “Neurology,” at that time, meant what “neuroanatomy” means today. 

Another source of confusion for a modern reader is the old use of the terms “hysterical” and “hypochondriac” to describe neurological conditions of the body, not the mind. The “hypochondria” were the abdominal regions and “hysteria,” in Greek, was the uterus; as Whytt explained in his treatise, hysterical and hypochondriac disorders were those neurological diseases that were believed to have their origins in the internal organs, “hysterical” traditionally being applied to women’s diseases and “hypochondriac” to men’s. When the stomach, bowels and digestion were involved, the illness was called hypochondriac or hysterical depending on the patient’s sex. When the patient had seizures, blackouts, tremors, or palpitations, but the internal organs were not affected, the illness was called simply “nervous.” 

Confounding this confusion still further were the Draconian treatments that were standard medical practice until well into the nineteenth century, which themselves often caused serious neurological problems. These were based on the humoral theory of medicine as set forth by Hippocrates in the fifth century B.C. For thousands of years all sickness was believed to be caused by an imbalance of “humors”—the four humors being phlegm, yellow bile, black bile, and blood—so that the goal of medical treatment was to strengthen the deficient humors and drain off those that were in excess. Therefore all medical complaints, major and minor, were subject to treatment by some combination of purging, vomiting, sweating, bleeding, medicines, and dietary prescriptions. And the drugs were liable to be neurotoxic, preparations containing heavy metals such as antimony, lead, and mercury being frequently prescribed. 

By the early nineteenth century, some doctors had begun to question the humoral theory of disease, but the term “neurology” had not yet acquired its modern meaning. During this time the realization that many illnesses were still being called “hysterical” and “hypochondriac” when there was nothing wrong with the uterus or internal organs led a number of physicians to try out new names for diseases of the nervous system. In the eighteenth century Pierre Pomme’s “vaporous conditions” included cramps, convulsions, vomiting, and vertigo. Some of these patients had total suppression of urine, spitting of blood, fevers, smallpox, strokes, and other illnesses that sometimes took their lives. When the disease didn’t kill them the frequent bleedings often did. Thomas Trotter’s book, A View of the Nervous Temperament, written in 1807, included cases of worms, chorea, tremors, gout, anemia, menstrual disorders, heavy metal poisonings, fevers, and convulsions leading to death. A series of later French doctors tried out names like “proteiform neuropathy,” “nervous hyperexcitability,” and “the nervous state.” Claude Sandras’ 1851 Traité Pratique des Maladies Nerveuses (“Practical Treatise on Nervous Diseases”) is a conventional textbook on neurology. Eugène Bouchut’s 1860 book on “l’état nerveux” (“the nervous state”) contained many case histories of patients suffering from the effects of blood-letting, tertiary syphilis, typhoid fever, miscarriage, anemia, paraplegia, and other acute and chronic illnesses of known causes, some lethal. Beard’s neurasthenia is not to be found. 

In fact, the first description anywhere of the disease to which Beard called the world’s attention is in Austin Flint’s textbook of medicine published in New York in 1866. A professor at the Bellevue Hospital Medical College, Flint devoted two brief pages to it and gave it almost the same name Beard was to popularize three years later. Patients with “nervous asthenia,” as he called it, “complain of languor, lassitude, want of buoyancy, aching of the limbs, and mental depression. They are wakeful during the night, and enter upon their daily pursuits with a sense of fatigue.”9 These patients did not have anemia or any other evidence of organic disease. They also did not die of their disease; on the contrary, as Beard and others were later to also observe, they seemed to be protected from ordinary acute illnesses and lived, on average, longer than others. 

These first publications were the beginning of an avalanche. “More has been written about neurasthenia in the course of the last decade,” wrote Georges Gilles de la Tourette in 1889, “than on epilepsy or hysteria, for example, during the last century.”10

The best way to familiarize the reader with both the disease and its cause is to introduce another prominent New York City physician who herself suffered from it—though by the time she told her story the American medical profession had been trying to find the cause of neurasthenia for nearly half a century and, not finding one, had concluded that the illness was psychosomatic. 

Dr. Margaret Abigail Cleaves, born in the territory of Wisconsin, had graduated from medical school in 1879. She had first worked at the State Hospital for the Insane at Mt. Pleasant, Iowa, and from 1880 to 1883 had served as chief physician to the female patients of the Pennsylvania State Lunatic Hospital. In 1890 she had moved to the big city, where she had opened a private practice in gynecology and psychiatry. It was not until 1894, at the age of 46, that she was diagnosed with neurasthenia. What was new was her heavy exposure to electricity: she had begun to specialize in electrotherapy. Then, in 1895, she opened the New York Electro-Therapeutic Clinic, Laboratory, and Dispensary, and within a matter of months experienced what she termed her “complete break.” 

Margaret Abigail Cleaves, M.D. (1848-1917) 

The details, written down over time in her Autobiography of a Neurasthene, describe the classic syndrome presented nearly half a century earlier by Beard. “I knew neither peace nor comfort night nor day,” she wrote. “There remained all the usual pain of nerve trunks or peripheral nerve endings, the exquisite sensitiveness of the body, the inability to bear a touch heavier than the brush of a butterfly’s wing, the insomnia, lack of strength, the recurrence of depression of spirits, the inability to use my brain at my study and writing as I wished.” 

“It was with the greatest difficulty,” she wrote on another occasion, “to even use knife and fork at the table, while the routine carving was an impossibility.” 

Cleaves had chronic fatigue, poor digestion, headaches, heart palpitations and tinnitus. She found the sounds of the city unbearable. She smelled and tasted “phosphorus.” She became so sensitive to the sun that she lived in darkened rooms, able to go outdoors only at night. She gradually lost her hearing in one ear. She became so affected by atmospheric electricity that, by her sciatica, her facial pain, her intense restlessness, her feeling of dread, and her sensation “of a crushing weight bowing me to the earth,” she could predict with certainty 24 to 72 hours in advance that the weather was going to change. “Under the influence of oncoming electrical storms,” she wrote, “my brain does not function.”11 

And yet through it all, suffering until the end of her life, she was dedicated to her profession, exposing herself day in and day out to electricity and radiation in their various forms. She was a founding and very active officer of the American Electro-Therapeutic Association. Her textbook on Light Energy taught the therapeutic uses of sunlight, arc light, incandescent light, fluorescent light, X-rays, and radioactive elements. She was the first physician to use radium to treat cancer. 

How could she not have known? And yet it was easy. In her day as in ours, electricity did not cause disease, and neurasthenia—it had finally been decided—resided in the mind and emotions. 

Other related illnesses were described in the late nineteenth and early twentieth centuries, occupational diseases suffered by those who worked in proximity to electricity. “Telegrapher’s cramp,” for example, called by the French, more accurately, “mal télégraphique” (“telegraphic sickness”) because its effects were not confined to the muscles of the operator’s hand. Ernest Onimus described the affliction in Paris in the 1870s. These patients suffered from heart palpitations, dizziness, insomnia, weakened eyesight, and a feeling “as though a vice were gripping the back of their head.” They suffered from exhaustion, depression, and memory loss, and after some years of work a few descended into insanity. In 1903, Dr. E. Cronbach in Berlin gave case histories for seventeen of his telegraphist patients. Six had either excessive perspiration or extreme dryness of hands, feet, or body. Five had insomnia. Five had deteriorating eyesight. Five had tremors of the tongue. Four had lost a degree of their hearing. Three had irregular heartbeats. Ten were nervous and irritable both at work and at home. “Our nerves are shattered,” wrote an anonymous telegraph worker in 1905, “and the feeling of vigorous health has given way to a morbid weakness, a mental depression, a leaden exhaustion… Hanging always between sickness and health, we are no longer whole, but only half men; as youths we are already worn out old men, for whom life has become a burden… our strength prematurely sapped, our senses, our memory dulled, our impressionability curtailed.” These people knew the cause of their illness. “Has the release of electrical power from its slumber,” asked the anonymous worker, “created a danger for the health of the human race?”12 In 1882, Edmund Robinson encountered similar awareness among his telegraphist patients from the General Post Office at Leeds. For when he suggested treating them with electricity, they “declined trying anything of the kind.” 

Long before that, an anecdote from Dickens could have served as a warning. He had toured St. Luke’s Hospital for Lunatics. “We passed a deaf and dumb man,” he wrote, “now afflicted with incurable madness.” Dickens asked what employment the man had been in. “‘Aye,’ says Dr. Sutherland, ‘that is the most remarkable thing of all, Mr. Dickens. He was employed in the transmission of electric-telegraph messages.’ The date was January 15, 1858.13 

Telephone operators, too, often suffered permanent injury to their health. Ernst Beyer wrote that out of 35 telephone operators that he had treated during a five-year period, not a single one had been able to return to work. Hermann Engel had 119 such patients. P. Bernhardt had over 200. German physicians routinely attributed this illness to electricity. And after reviewing dozens of such publications, Karl Schilling, in 1915, published a clinical description of the diagnosis, prognosis, and treatment of illness caused by chronic exposure to electricity. These patients typically had headaches and dizziness, tinnitus and floaters in the eyes, racing pulse, pains in the region of the heart, and palpitations. They felt weak and exhausted and were unable to concentrate. They could not sleep. They were depressed and had anxiety attacks. They had tremors. Their reflexes were elevated, and their senses were hyperacute. Sometimes their thyroid was hyperactive. Occasionally, after long illness, their heart was enlarged. Similar descriptions would come throughout the twentieth century from doctors in the Netherlands, Belgium, Denmark, Austria, Italy, Switzerland, the United States, and Canada.14 In 1956, Louis Le Guillant and his colleagues reported that in Paris “there is not a single telephone operator who doesn’t experience this nervous fatigue to one degree or another.” They described patients with holes in their memory, who couldn’t carry on a conversation or read a book, who fought with their husbands for no reason and screamed at their children, who had abdominal pains, headaches, vertigo, pressure in their chest, ringing in their ears, visual disturbances, and weight loss. A third of their patients were depressed or suicidal, almost all had anxiety attacks, and over half had disturbed sleep. 

As late as 1989, Annalee Yassi reported widespread “psychogenic illness” among telephone operators in Winnipeg, Manitoba and St. Catharines, Ontario, and in Montreal, Bell Canada reported that 47 percent of its operators complained of headaches, fatigue, and muscular aches related to their work. 

Then there was “railway spine,” a misnamed illness that was investigated as early as 1862 by a commission appointed by the British medical journal Lancet. The commissioners blamed it on vibrations, noise, speed of travel, bad air, and sheer anxiety. All those factors were present, and no doubt contributed their share. But there was also one more that they did not consider. Because by 1862, every rail line was sandwiched between one or more telegraph wires running overhead and the return currents from those lines coursing beneath, a portion of which flowed along the metal rails themselves, upon which the passenger cars rode. Passengers and train personnel commonly suffered from the same complaints later reported by telegraph and telephone operators: fatigue, irritability, headaches, chronic dizziness and nausea, insomnia, tinnitus, weakness, and numbness. They had rapid heart beat, bounding pulse, facial flushing, chest pains, depression, and sexual dysfunction. Some became grossly overweight. Some bled from the nose, or spat blood. Their eyes hurt, with a “dragging” sensation, as if they were being pulled into their sockets. Their vision and their hearing deteriorated, and a few became gradually paralyzed. A decade later they would have been diagnosed with neurasthenia—as many railroad employees later were. 

The most salient observations made by Beard and the late nineteenth century medical community about neurasthenia are these: 

It spread along the routes of the railroads and telegraph lines. 

It affected both men and women, rich and poor, intellectuals and farmers. 

Its sufferers were often weather sensitive. 

It sometimes resembled the common cold or influenza. 

It ran in families. 

It seized most commonly people in the prime of their life, ages 15 to 45 according to Beard, 15 to 50 according to Cleaves, 20 to 40 according to H. E. Desrosiers,15 20 to 50 according to Charles Dana. 

It lowered one’s tolerance for alcohol and drugs. 

It made people more prone to allergies and diabetes. 

Neurasthenes tended to live longer than average. 

And sometimes—a sign whose significance will be discussed in chapter 10—neurasthenes passed reddish or dark brown urine. 

It was the German physician Rudolf Arndt who finally made the connection between neurasthenia and electricity. His patients who could not tolerate electricity intrigued him. “Even the weakest galvanic current,” he wrote, “so weak that it scarcely deflected the needle of a galvanometer, and was not perceived in the slightest by other people, bothered them in the extreme.” He proposed in 1885 that “electrosensitivity is characteristic of high-grade neurasthenia.” And he prophesied that electrosensitivity “may contribute not insubstantially to the elucidation of phenomena that now seem puzzling and inexplicable.” 

He wrote this in the middle of an intense, unrelenting haste to wire the whole world, driven by an unquestioning embrace of electricity, even an adoration, and he wrote it as though he knew he was risking his reputation. A large obstacle to the proper study of neurasthenia, he suggested, was that people who were less sensitive to electricity did not take its effects at all seriously: instead, they placed them in the realm of superstition, “lumped together with clairvoyance, mindreading and mediumship.”16 

That obstacle to progress confronts us still today. 

The Renaming 

In December 1894, an up-and-coming Viennese psychiatrist wrote a paper whose influence was enormous and whose consequences for those who came after have been profound and unfortunate. Because of him, neurasthenia, which is still the most common illness of our day, is accepted as a normal element of the human condition, for which no external cause need be sought. Because of him, environmental illness, that is, illness caused by a toxic environment, is widely thought not to exist, its symptoms automatically blamed on disordered thoughts and out-of-control emotions. Because of him, we are today putting millions of people on Xanax, Prozac, and Zoloft instead of cleaning up their environment. For over a century ago, at the dawn of an era that blessed the use of electricity full throttle not just for communication but for light, power, and traction, Sigmund Freud renamed neurasthenia “anxiety neurosis” and its crises “anxiety attacks.” Today we call them also “panic attacks.” [Freud? more like a fraud,and one of the biggest quacks the Earth and it's people have had to suffer, the first in a field overrun with them DC]

The symptoms listed by Freud, in addition to anxiety, will be familiar to every doctor, every “anxiety” patient, and every person with electrical sensitivity: 

Irritability 

Heart palpitations, arrhythmias, and chest pain 

Shortness of breath and asthma attacks 

Perspiration 

Tremor and shivering 

Ravenous hunger 

Diarrhea 

Vertigo 

Vasomotor disturbances (flushing, cold extremities, etc.) 

Numbness and tingling 

Insomnia 

Nausea and vomiting 

Frequent urination 

Rheumatic pains 

Weakness 

Exhaustion [I count 13 of these issues that I am dealing with basically on a daily basis, plus the constant ringing in the ears,and the floaters in my eyes that I suspect are connected to this plague also, it definitely sucks and affects quality of life DC]

Freud ended the search for a physical cause of neurasthenia by reclassifying it as a mental disease. And then, by designating almost all cases of it as “anxiety neurosis,” he signed its death warrant. Although he pretended to leave neurasthenia as a separate neurosis, he didn’t leave it many symptoms, and in Western countries it has been all but forgotten. In some circles it persists as “chronic fatigue syndrome,” a disease without a cause that many doctors believe is also psychological and that most don’t take seriously. Neurasthenia survives in the United States only in the common expression, “nervous breakdown,” whose origin few people remember. 

In the International Classification of Diseases (ICD-10), there is a unique code for neurasthenia, F48.0, but in the version used in the United States (ICD-10-CM), F48.0 has been removed. In the American version, neurasthenia is only one among a list of “other nonpsychotic mental disorders” and is almost never diagnosed. Even in the Diagnostic and Statistical Manual (DSM-V), the official system for assigning codes to mental diseases in American hospitals, there is no code for neurasthenia. 

It was a death warrant only in North America and Western Europe, however. Half the world still uses neurasthenia as a diagnosis in the sense intended by Beard. In all of Asia, Eastern Europe, Russia and the former Soviet Republics, neurasthenia is today the most common of all psychiatric diagnoses as well as one of the most frequently diagnosed diseases in general medical practice.17 It is often considered a sign of chronic toxicity. 18 [no surprise $$$ more important in the west then peoples health DC]

In the 1920s, just as the term was being abandoned in the West, it was first coming into use in China.19 The reason: China was just beginning to industrialize. The epidemic that had begun in Europe and America in the late nineteenth century had not yet reached China at that time. 

In Russia, which began to industrialize along with the rest of Europe, neurasthenia became epidemic in the 1880s.20 But nineteenth century Russian medicine and psychology were heavily influenced by neurophysiologist Ivan Sechenov, who emphasized external stimuli and environmental factors in the workings of the mind and body. Because of Sechenov’s influence, and that of his pupil Ivan Pavlov after him, the Russians rejected Freud’s redefinition of neurasthenia as anxiety neurosis, and in the twentieth century Russian doctors found a number of environmental causes for neurasthenia, prominent among which are electricity and electromagnetic radiation in their various forms. And as early as the 1930s, because they were looking for it and we weren’t, a new clinical entity was discovered in Russia called “radio wave sickness,” which is included today, in updated terms, in medical textbooks throughout the former Soviet Union and ignored to this day in Western countries, and to which I will return in later chapters. In its early stages the symptoms of radio wave sickness are those of neurasthenia. 

As living beings, not only do we possess a mind and a body, but we also have nerves that join the two. Our nerves are not just conduits for the ebb and flow of electric fluid from the universe, as was once believed, nor are they just an elaborate messenger service to deliver chemicals to muscles, as is currently thought. Rather, as we will see, they are both. As a messenger service, the nervous system can be poisoned by toxic chemicals. As a network of fine transmission wires, it can easily be damaged or unbalanced by a great or unfamiliar electric load. This has effects on both mind and body that we know today as anxiety disorder.73s

6

The Behavior of Plants

WHEN I FIRST ENCOUNTERED the works of Sir Jagadis Chunder Bose, I was stunned. The son of a public official in East Bengal, Bose was educated in Cambridge, where he received a degree in natural science that he took back to his home country. A genius in both physics and botany, he had an extraordinary eye for detail as well as a unique talent for designing precision measuring equipment. With an intuition that all living things share the same fundamentals, this man built elegant machinery that could magnify the movements of ordinary plants one hundred million times, while recording such movements automatically, and he proceeded in this way to study the behavior of plants in the same manner that zoologists study the behavior of animals. In consequence, he was able to locate the nerves of plants—not just unusually active plants like Mimosa and Venus fly trap, but “normal” plants—and he actually dissected them out and proved that they generate action potentials like any animal’s nerves. He performed conduction experiments on the nerves of ferns in the same way physiologists do with the sciatic nerves of frogs.

Sir Jagadis Chunder Bose (1858-1937) 

Bose also located pulsating cells in a plant’s stem which he showed are responsible for pumping the sap, which have special electrical properties, and he built what he called a magnetic sphygmograph that magnified the pulsations ten million times and measured changes in sap pressure. 

I was astonished, because you can search botanical textbooks today without finding so much as a hint that plants have anything like a heart and a nervous system. Bose’s books, including Plant Response (1902), The Nervous Mechanism of Plants (1926), Physiology of the Ascent of Sap (1923), and Plant Autographs and Their Revelations (1927), languish in the archives of research libraries. 

But Bose did more than just find the nerves of plants. He demonstrated the effects of electricity and radio waves on them, and he obtained similar results with sciatic nerves of frogs, proving the exquisite sensitivity of all living things to electromagnetic stimuli. His expertise in these areas was beyond question. He had been appointed Officiating Professor of Physics at the Presidency College in Calcutta in 1885. He made contributions in the field of solid-state physics, and is credited with the invention of the device—called a coherer— that was used to decode the first wireless message sent across the Atlantic Ocean by Marconi. In fact, Bose had given a public demonstration of wireless transmission in a lecture hall in Calcutta in 1895, more than a year before Marconi’s first demonstration on Salisbury Plain in England. But Bose took out no patents, and sought no publicity for his invention of the radio. Instead he gave up those technical pursuits to devote the rest of his life to the more humble study of plant behavior. 

In applying electricity to plants, Bose built on a tradition that was already a century and a half old. 

The first to electrify a plant with a friction machine was a Dr. Mainbray of Edinburgh, who connected two myrtle trees to a machine throughout October 1746; the two trees sent out new branches and buds that autumn as though it were springtime. The following October, Abbé Nollet, having received this news, conducted the first of a series of more rigorous experiments in Paris. In addition to Carthusian monks and soldiers of the French guard, Nollet was electrifying mustard seeds as they sprouted in tin bowls back in his laboratory. The electrified sprouts grew four times as tall as normal, but with stems that were weaker and more slender. 1 

That December, around Christmas time, Jean Jallabert electrified jonquil, hyacinth, and narcissus bulbs in carafes of water. 2 The following year Georg Bose electrified plants at Wittenberg,3 and Abbé Menon at Angers,4 and for the rest of the eighteenth century plant growth demonstrations were de rigeur among scientists studying frictional electricity. The energized plants sprouted earlier, grew faster and longer, opened their flowers sooner, sent out more leaves, and were generally—but not always—sturdier. 

Jean-Paul Marat even watched electrified lettuce seeds germinate in the month of December when the ambient temperature was two degrees above freezing.5 

Giambattista Beccaria in Turin was the first, in 1775, to suggest the use of these effects for the benefit of agriculture. Soon afterwards Francesco Gardini, also in Turin, stumbled upon the opposite effect: plants deprived of the natural atmospheric field did not grow as well. A network of iron wires had been stretched over the ground for the purpose of detecting atmospheric electricity. But the wires happened to run above part of a monastery’s garden, shielding it from the atmospheric fields that the wires were measuring. For the three years that the wire net had been in place, the gardeners tending that section had complained that their harvests of fruits and seeds were fifty to seventy percent less than in the rest of their gardens. So the wires were removed, and production returned to normal. Gardini drew a remarkable inference. “Tall plants,” he said, “have a harmful influence on the development of plants that grow at their base, not only by depriving them of light and heat, but also because they absorb atmospheric electricity at their expense.”6 

In 1844, W. Ross was the first of many to apply electricity to a field of crops, using a one-volt battery much like the one from which Humboldt had so successfully elicited sensations of light and taste, only larger. He buried a copper plate five feet by fourteen inches at one end of a row of potatoes, a zinc plate two hundred feet away at the other end, and connected the two plates with a wire. And in July he harvested potatoes averaging two and a half inches in diameter from the electrified row, versus only one-half inch from the untreated row. 7 

In the 1880s, Professor Selim Lemström of the University of Helsingfors in Finland conducted large-scale experiments on crops with a friction machine, suspending over his crops a network of pointed wires connected to the positive pole of the machine. Over a period of years he found that electricity stimulated the growth of some crops—wheat, rye, barley, oats, beets, parsnips, potatoes, celeriac, beans, leeks, raspberries, and strawberries—while it stunted the growth of peas, carrots, kohlrabi, rutabagas, turnips, cabbages, and tobacco. 

And in 1890, Brother Paulin, Director of the Agricultural Institute at Beauvais, France, invented what he called a “géomagnétifère” to draw down atmospheric electricity like Benjamin Franklin had once done with his kite. Perched atop a tall pole 40 to 65 feet high was an iron collecting rod, terminating in five pointed branches. Four such poles were planted on every hectare of land, and the electricity collected by them was carried to the soil and distributed to the crops by means of underground wires. 

According to contemporary newspaper accounts the effect was visually startling. Like supercrops, all of the potato plants within a sharply delineated ring were greener, taller, and “twice as vigorous” as the surrounding plants. The yield of potatoes within the electrified areas was fifty to seventy percent greater than outside them. Repeated in a vineyard, the experiment produced grape juice with seventeen percent more sugar, and wine with an exceptional alcohol content. Further trials in fields of spinach, celery, radishes, and turnips were just as impressive. Other farmers, using similar apparatus, improved their yields of wheat, rye, barley, oats, and straw.

All these experiments with frictional electricity, feeble electric batteries, and atmospheric fields might make one suspect that it doesn’t take very much current to affect a plant. But until the end of the nineteenth century the experiments lacked precision, and accurate measurements were not available. 

Which brings me back to Jagadis Chunder Bose. 

In 1859, Eduard Pflüger had formulated a simple model of how electric currents affect animal nerves. If two electrodes are attached to a nerve and the current is suddenly turned on, the negative electrode, or cathode, momentarily stimulates the section of nerve near it, while the positive electrode, or anode, has a deadening effect. The reverse occurs at the moment the current is broken. The cathode, said Pflüger, increases excitability at “make,” and decreases excitability at “break,” while the anode does just the opposite. While the current is flowing and not changing, supposedly nervous activity is not affected whatsoever by the current. Pflüger’s Law, formulated a century and a half ago, is widely believed until the present day, and is the basis for modern electrical safety codes that are designed to prevent shocks at “make” or “break” of circuits but that do not prevent low-level continuous currents from being induced in the body because they are presumed to be of no consequence. 

Unfortunately Pflüger’s Law is not true and Bose was the first to prove it. One problem with Pflüger’s Law is that it was based on experiments using relatively strong electric currents, on the order of one milliampere (a thousandth of an ampere). But, as Bose showed, it is not even correct at those levels.9 Experimenting on himself in much the same way Humboldt had done a century before, Bose applied an electromotive force of 2 volts to a skin wound, and to his surprise the cathode, both at make, and as long as the current flowed, made the wound much more painful. The anode, both at make and while the current flowed, soothed the wound. But exactly the opposite occurred when he applied a much lower voltage. At a third of a volt, the cathode soothed and anode irritated. 

After experimenting on his own body, Bose, being a botanist, tried a similar experiment on a plant. He took a twenty-centimeter length of the nerve of a fern, and applied an electromotive force of only a tenth of a volt across the ends. This sent a current of about three ten-millionths of an ampere through the nerve, or about one thousand times less than the range of currents most modern physiologists and makers of safety regulations are used to thinking about. Again, at this low level of current, Bose found precisely the reverse of Pflüger’s Law: the anode stimulated the nerve and the cathode made it less responsive. Evidently, in plants as well as in animals, electricity could have exactly opposite effects depending on the strength of the current. 

Still Bose was not satisfied, because under certain circumstances the effects did not consistently follow either pattern. Maybe, suspected Bose, Pflüger’s model was not only wrong but simplistic. He speculated that the applied currents were actually altering the conductivity of the nerves and not just the threshold of their response. Bose questioned the received wisdom that nervous functioning was a neat all or nothing response based only on chemicals in a watery solution. 

His ensuing experiments confirmed his suspicions spectacularly. Contrary to existing theories—existing still today in the twenty-first century—of how nerves function, a constantly applied electric current, even though tiny, profoundly altered the conductivity of the animal and plant nerves Bose tested. If the applied current was in the same direction as nervous impulses, the speed of the impulses became slower and, in the animal, the muscular response to stimulation became weaker. If the applied current was in the opposite direction, nervous impulses traveled faster and muscles responded more vigorously. By manipulating the magnitude and direction of the applied current, Bose found that he could control nerve conduction at will, in animals and in plants, making nerves more or less sensitive to stimulation, or even blocking conduction altogether. And after the current was turned off, a rebound effect was observed. If a given amount of current depressed conduction, the nerve became hypersensitive after it was turned off, and remained so for a period of time. In one experiment a brief current of 3 microamperes—3 millionths of an ampere—produced nervous hypersensitivity for 40 seconds. 

An incredibly tiny current was all that was needed: in plants, one microampere, and in animals a third of a microampere, was enough to slow or speed up nerve impulses by about twenty percent.10 This is about the amount of current that would flow through your hand if you touched both ends of a one-volt battery, or that would flow through your body if you slept under an electric blanket. It is much less than the currents that are induced in your head when you talk on a cell phone. And, as we will see, it requires even less current to affect growth than to affect nerve activity. 

In 1923, Vernon Blackman, an agricultural researcher at Imperial College in England, found in field experiments that electric currents averaging less than one milliampere (one thousandth of an ampere) per acre increased the yields of several types of crops by twenty percent. The current passing through each plant, he calculated, was only about 100 picoamperes—that’s 100 trillionths of an ampere, about a thousand times less than the currents Bose had found were necessary to stimulate or deaden nerves. 

But the field results were inconsistent. So Blackman took his experiments into the laboratory where both exposure and growth conditions could be precisely controlled. Barley seeds were sprouted in glass tubes, and at varying heights above each plant was a metal point charged to about 10,000 volts by a DC power supply. The current flowing through each plant was measured precisely with a galvanometer, and Blackman found that a maximal increase in growth was obtained with a current of only 50 picoamperes, applied for just one hour per day. Increasing the time of application diminished the effect. Increasing the current to a tenth of a microampere was always harmful. 

In 1966, Lawrence Murr and colleagues at Pennsylvania State University, experimenting on sweet corn and bush beans, verified Blackman’s finding that currents around one microampere inhibited growth and damaged leaves. They then took these experiments one step farther: they undertook to discover the smallest current that would affect growth. And they found that any current greater than one quadrillionth of an ampere would stimulate plant growth. 

In his radio experiments, Bose used a device he called a magnetic crescograph, which recorded the growth rate of plants, magnified ten million times.11 Remember that Bose was also an expert in wireless technology. When he set up a radio transmitter at one end of his property, and a plant attached to a receiving aerial at the other end, two hundred meters away, he found that even a brief radio transmission changed a plant’s growth rate within a few seconds. The broadcast frequency, implied from his description, was about 30 MHz. We are not told what the power was. However, Bose recorded that a “feeble stimulus” produced an immediate acceleration of growth, and that “moderate” radio energy retarded growth. In other experiments he proved that exposure to radio waves slowed the ascent of sap.12 

Bose’s conclusions, drawn in 1927, were striking and prophetic. “The perceptive range of the plant,” he wrote, “is inconceivably greater than ours; it not only perceives, but also responds to the different rays of the vast aetherial spectrum. Perhaps it is as well that our senses are limited in their range. For life would otherwise be intolerable under the constant irritation of these ceaseless waves of space-signalling to which brick walls are quite transparent. Hermetically-sealed metal chambers would then have afforded us the only protection.”13

next

PART 3

https://exploringrealhistory.blogspot.com/2020/12/part-3-invisible-rainbowacute.html

acute electrical illness


footnotes

Chapter 4. The Road Not Taken 

1. Newton 1713, p. 547. 

2. Nollet 1746, p. 33. 

3. Marcelin Du Carla-Bonifas, Cosmogonie, quoted in Bertholon 1786, vol. 1, p. 86. 

4. Voltaire 1772, pp. 90-91. 

5. Marat 1782, p. 362. 

6. Wesley 1760, p. 1. 

Chapter 5. Chronic Electrical Illness 

1. Charles Dickens, “House-Top Telegraphs,” All the Year Round, Nov. 26, 1859. 

2. Highton 1851, pp. 151-52. 

3. Dana 1923, p. 429. 

4. Beard 1875. 

5. Prescott 1860, pp. 84, 270, 274. 

6. Morse 1870, p. 613. 

7. London District Telegraph Company used a single-needle apparatus and an alphabet code that required an average 2.9 needle positions per letter. 

8. Gosling 1987; Lutz 1991; Shorter 1992; Winter 2004. 

9. Flint 1866, pp. 640-41. 

10. Tourette 1889, p. 61. 

11. Cleaves 1910, pp. 9, 80, 96, 168-69. 

12. Anonymous 1905. 

13. Letter to W. Wilkie Collins, Jan. 17, 1858. 

14. Gellé 1889; Castex 1897a, b; Politzer 1901; Tommasi 1904; Blegvad 1907; Department of Labour, Canada 1907; Heijermans 1908; Julliard 1910; Thébault 1910; Butler 1911; Capart 1911; Fontègne 1918; Picaud 1949; Le Guillant 1956; Yassi 1989. 

15. Desrosiers 1879, citing Jaccoud. 

16. Arndt 1885, pp. 102-4. 

17. Kleinman 1988, p. 103; World Psychiatric Association 2002, p. 9. Flaskerud 2007, p. 658 reports that neurasthenia is the second most common psychiatric diagnosis in China. 

18. World Psychiatric Association 2002, p. 10. 

19. Tsung-Yi Lin 1989b, p. 112. 

20. Goering 2003, p. 35. 

Chapter 6. The Behavior of Plants 

1. Nollet 1753, pp. 356-61. 

2. Jallabert 1749, pp. 91-92. 

3. Bose 1747, p. 20. 

4. Bertholon 1783, p. 154. 

5. Marat 1782, pp. 359-60. 

6. Quotation in Hull 1898, pp. 4-5. 

7. Stone 1911, p. 30. 

8. Paulin 1890; Crépeaux 1892; Hull 1898, pp. 9-10. 

9. Bose 1907, pp. 578-86, “Inadequacy of Pflüger’s Law.” 

10. Bose 1915. 

11. Bose 1919, pp. 416-24, “Response of Plants to Wireless Stimulation.” 

12. Bose 1923, pp. 106-7. 

13. Bose 1927, p. 94.




No comments:

Part 1 Windswept House A VATICAN NOVEL....History as Prologue: End Signs

Windswept House A VATICAN NOVEL  by Malachi Martin History as Prologue: End Signs  1957   DIPLOMATS schooled in harsh times and in the tough...