Sunday, March 20, 2022

Part 2 The Body Electric ...The Sign of the Miracle ... Life's Potentials

The Body Electric
by Robert O. Becker


3
The Sign of the Miracle
When you want to do a research project, there are certain channels you must go through to get the money. You write a project proposal, spelling out what hypothesis you want to test, why you think it should be done, and how you plan to go about it. The proposal goes to a committee supposedly composed of your peers, people who have demonstrated competence in related research. If they approve your project and the money is available, you generally get part of what you asked for, enough to get started.

The Veterans Administration had been dispensing research money for several years as a sort of bribe to attract doctors despite the low pay in government service. The money from Washington was doled out by the most influential doctors on the staff, not necessarily the best researchers, but I still felt I had a good chance because the VA was having an especially hard time recruiting orthopedists. Moreover, my hypothesis was based on the work of Rose, Polezhaev, Singer, Sinyukhin, and Zhirmunskii with inescapable logic. And since frogs and salamanders were anatomically similar, any difference in their currents of injury should reflect the disparity in their powers of regeneration. My chances of being thrown off by extraneous factors were thus minimal.

I remember thinking, as I wrote the proposal, how my life had come full circle. As a college freshman in 1941, I'd conducted a crude experiment on salamanders, showing that thyroid stimulation by iodine didn't speed up regeneration. Here I was nearly twenty years later, beneficiary of the intervening research, hoping to add to our knowledge of the same phenomenon and perhaps even discover something that would help human patients. I worried that my roundabout course might weigh against me, since one of the criteria for grants was whether the investigator had been trained for that particular field. This proposal would have been expected from a physiologist, not an orthopedist. Nevertheless, I was asking for a relatively minuscule amount of money. I needed only a thousand dollars to put together the equipment, so I didn't anticipate much trouble. 

The Tribunal "Dr. Becker, could you please come to a special research committee meeting in one hour?" The committee's secretary was calling. I'd known something was up, two months had passed since I'd filed my proposal, and all my queries as to its fate had gone unanswered. 

"I'll be there." 

"It's not here in the research office. It's downstairs in the hospital director's office." Now that was really strange. The director almost never paid any attention to the research program. Besides, his office was big enough to hold a barbecue in. 

It was a barbecue, all right, and I was the one being grilled. The director's conference room had been rearranged. In place of the long, polished table there was a semicircle of about a dozen chairs, each occupied by one of the luminaries from the hospital and medical school. I recognized the chairmen of the departments of biochemistry and physiology along with the hospital director and chief of research. Only the dean was missing. In the center was a single chair—for me. 

The spokesman came right to the point: "We have a very grave basic concern over your proposal. This notion that electricity has anything to do with living things was totally discredited some time ago. It has absolutely no validity, and the new scientific evidence you're citing is worthless. The whole idea was based on its appeal to quacks and the gullible public. I will not stand idly by and see this medical school associated with such a charlatanistic, unscientific project." Murmurs of assent spread around the group. 

I had the momentary thrill of imagining myself as Galileo or Giordano Bruno; I thought of walking to the window to see if the stake and fagots were set up on the lawn. Instead I delivered a terse speech to the effect that I still thought my hypothesis was stoutly supported by some very good research and that I was sorry if it flew in the face of dogma. I ended by saying that I didn't intend to withdraw the proposal, so they would have to act upon it. 

When I got home, my fury was gone. I was ready to call the director, withdraw my proposal, apologize for my errors, stay out of research, quit the VA, and go into private practice, where I could make a lot more money. Luckily, my wife Lil knows me better than I sometimes know myself. She told me, "You'd be miserable in private practice. This is exactly what you want to do, so just wait and see what happens." 

Two days later I got word that the committee had delegated the decision to Professor Chester Yntema, an anatomist who long ago had studied the regrowth of ears in the salamander. Since he was the only one in Syracuse who'd ever done any regeneration research, I've always wondered why he wasn't part of the first evaluation. I went to see him with a sense of foreboding, for his latest research seemed to refute Singer's nerve work, on which I'd based my proposal. 

Using a standard technique, Yntema had operated on very young salamander embryos, cutting out all of the tissues that would have given  rise to the nervous system. He then grafted each of these denervated embryos onto the back of a whole one. The intact embryos furnished the grafts with blood and nourishment, and the procedure resulted in a little "parabiotic" twin, normal except for having no nerves, stuck on the back of each host animal. Yntema then cut off one leg from each of these twins, and some of them regenerated. Since microscopic examination revealed no nerves entering the graft from its host, Yntema's experiment called Singer's conclusions into question. 

Dr. Yntema turned out to be one of the nicest gentlemen I've ever met, but as I entered his office his Dickensian appearance of eminence— he was tall, thin, elderly, with craggy features, and wore an immaculately starched, long white lab coat—made me feel like a freshman being called before the dean. But he put me at ease immediately. 

"I've read your proposal and think it's most intriguing," he said with genuine interest. 

"Do you really?" I asked. "I've been afraid you would reject it out of hand because my ideas depend on Singer's work." 

"Marc Singer is a good, careful worker," Yntema replied. "I don't doubt his observations. What I've described is an exception to his findings under special circumstances." 

After a long, pleasant conversation about regrowth, nerves, and research itself, he gave me his approval with a word of caution: "Don't get your hopes up about what you want to do. I don't believe for one minute that it'll work, but I think you should do it anyway. We need to encourage young researchers. Besides, it'll be fun, and maybe you'll learn something new, after all. Let me know what happens, and if you need any help, I'll be here. I'll call the people at the VA right away, so get to work. Good luck." 

This was the start of a long friendship. I'm deeply indebted to Chester Yntema for his encouragement. Had he not believed that research should be fun, that you should do what you want rather than what's fashionable, my first experiment would have been impossible, and this book would never have been written. 

The Reversals 
First I found a good supplier of salamanders and frogs, a Tennessee game warden who ran this business in his spare time. Sometimes the shipment would contain a surprise, a small snake. I never found out whether he included them deliberately or by error. At any rate, his animals weren't the inferior aquarium-bred stock but robust specimens collected from their natural habitats. 

Next I worked out some technical problems. The most important of these was the question of where to place the electrodes. To form the circuit, two electrodes had to touch the animal. One was the "hot" or measuring electrode, which determined the polarity, positive or negative, with regard to a stationary reference electrode. A negative polarity meant there were more electrons where the measuring electrode was placed, while a positive polarity meant there were more at the reference site. A steady preponderance of negative charge at a particular location could mean there was a current flowing toward that spot, continually replenishing the accumulation of electrons. The placement of the reference electrode, therefore, was critical, lest I get the voltage right but the polarity, and hence the direction of the current, wrong. Some logical position had to be chosen and used every time. 

Since I postulated that the nerves were somehow related to the current, the cell bodies that sent their nerve fibers into the limb seemed like a good reference point. These cell bodies were in a section of the spinal cord called the brachial enlargement, located just headward from where the arm joined the body. In both frogs and salamanders, therefore, I put the measuring electrode directly on the cut surface of the amputation stump and the reference electrode on the skin over the brachial enlargement. 

After setting up the equipment, I did some preliminary measurements on the intact animals. They all had areas of positive charge at the brachial enlargement and a negative charge of about 8 to 10 millivolts at each extremity, suggesting a flow of electrons from the head and trunk out into the limbs and, in the salamanders, the tail. 

I began the actual experiment by amputating the right forelimbs, between elbow and wrist, from fourteen salamanders and fourteen grass frogs, all under anesthesia. I took no special precautions against bleeding, since blood clots formed very rapidly. The wounds had to be left open, not only because closing the skin over the salamanders' amputation sites would have stopped regeneration, but also because I was investigating a natural process. In the wild, both frogs and salamanders get injuries much like the one I was producing—both are favorite foods of the freshwater bass—and heal them without a surgeon. 

Once the anesthetic wore off and the blood clot formed, I took a voltage reading from each stump. I was surprised to find that the polarity at the crump reversed to positive right after the injury. By the next day it had climbed to over 20 millivolts, the same in both frogs and salamanders. 

I made measurements daily, expecting to see the salamander voltages climb above those of the frogs as the blastemas formed. It didn't work that way. The force of the current flowing from the salamanders' amputation sites rapidly dropped, while that from the frogs' stumps stayed at the original level. By the third day the salamanders showed no current at all, and their blastemas hadn't even begun to appear. 

The experiment seemed a failure. I almost quit right there, but something made me keep on measuring. I guess I thought it would be good practice. 

Then, between the sixth and tenth days an exciting trend emerged. The salamander potentials changed their sign again, exceeding their normal voltage and reaching a peak of more than 30 millivolts negative just when the blastemas were emerging. The frogs were still plugging away with slowly declining positive voltages. As the salamander limbs regenerated and the frog stumps healed over with skin and scar tissue, both groups of limbs gradually returned (from opposite directions) to the original baseline of 10 millivolts negative. 

Here was confirmation better than my wildest dreams! Already, in my first experiment, I had the best payoff research can give—the excitement of seeing something no one else seen before. I knew now that 74 The Body Electric the current of injury wasn't due to dying cells, which were long gone by then. Moreover, the opposite polarities indicated a profound difference in the electrical properties of the two animals, which somehow would explain why only the salamander could regenerate. The negative potential seemed to bring forth the all-important blastema. It was a very significant observation, even though the facts had scrambled my neat 

Dr. Yntema agreed and urged me to write up a report for publication, but first I jumped ahead with another idea. I took a new group of frogs, amputated one foreleg from each, and every day applied negative current to the stump from a small battery. I dreamed of being the first to get complete regrowth in a normally non-regenerating animal; I could almost see my name on the cover of Scientific American. The frogs were less interested in my glory. They had to hold still for up to half an hour with electrodes attached. They refused, so I anesthetized them each day, something they tolerated very poorly. Within a week my Nobel Prize had turned into a collection of dead frogs. 

For some time I'd been scouring the dusty stacks of the medical library for previous work on bioelectricity, and how I found a paper written in 1909 by an American researcher named Owen E. Frazee. He reported that electrical currents passed through the aquarium water in which larval salamanders were living speeded up their regeneration. At that time, electrical equipment was so primitive that I couldn't rely on Frazee's results, but I decided to try it for myself. What Sinyukhin had done with tomato plants I hoped to do with salamanders. 

To one group of salamanders I applied 2 microamperes of positive current from batteries connected directly to the stumps for five to ten minutes on each of the first five days after amputation. This was 0.000002 ampere, a tiny current by ordinary standards (most household circuits carry 15 or 20 amperes) but comparable to what seemed to be flowing in the limb. I intended to reinforce the normal positive peak in the current of injury. This treatment seemed to make the blastemas larger but slowed down the whole process somewhat. To another group I applied 3 microamperes of negative current on the fifth to ninth days, when the normal currents were hitting their negative peaks. This seemed to increase the rate of regrowth for a week but didn't change the time needed for a complete limb. Finally I tried Frazee's method with a constant current through the aquarium water. Again the results were equivocal at best. These failures taught me that, before I applied my findings to other animals, I would have to learn how the current of injury worked. 

Meanwhile, I wrote up my results. Not knowing any better, I submitted my paper to the Journal of Bone and Joint Surgery, the most prestigious orthopedic journal in the world. It was a dumb thing to do. The experiment had no immediate practical application, while the journal accepted only clinical reports. Moreover, the publication was very political; normally you had to have an established reputation or come from one of the big orthopedic programs, like Harvard or Columbia, to get into it. Luckily, I didn't know that. Someone thought my paper was just what the doctor ordered. Not only was it accepted for publication, but I was invited to present it at the next combined meeting of the Orthopaedic Research Society and the American Academy of Orthopaedic Surgeons, at Miami Beach in January 1961. This invitation was a particular honor, for it meant someone considered my work so significant that practicing physicians, as well as researchers, should hear of it right then and there. Whoever that someone was, he or she has my undying gratitude. 

My report was well received and soon was published, to the consternation of the local inquisitors and the delight of Chester Yntema. Since the journal was geared to clinicians. I worried that my experiment wouldn't reach the basic researchers with whom I really wanted to share it, but again I was wrong. The next year I got a phone call from Meryl Rose himself. He was excited by the article and wanted to know what I'd done since. 

Although Rose taught at Tulane Medical School in New Orleans, he spent every summer at the Woods Hole Marine Biological Laboratory on Cape Cod, so he and his wife drove to Syracuse from there. Despite his success, Rose had maintained the completely open mind that a great researcher must have, and he was fascinated by the observations on electric fields, nerves, anesthesia, and magnetism that I'll recount in the next chapter. Since then his interest has encouraged me enormously. My friendship with this fine man and scientist has been fruitful even beyond the expectations I had then, and, when my wife and I had the Roses to dinner, we found our pasts were linked by an odd coincidence. As they walked in the door, Lillian exclaimed, "Dr. Rose! Weren't you at Smith College in the 1940s?" It turned out that she'd been a friend of Rose's student lab assistant and had helped catch the frogs for the famous salt in-the-wound experiment! 

Four 
Life's Potentials 
It's an axiom of science that the better an experiment is, the more new questions it raises after it has answered the one you asked. By that standard my first simple test had been pretty good. The new problems branched out like the fingers on those restored limbs: Where did the injury currents come from? Were they in fact related to the nervous system and, if so, how? It seemed unlikely that they sprang into action only after an amputation; they must have existed before. There must have been a preexisting substratum of direct current activity that responded to the injury. Did the voltages I measured really reflect such currents, and did they flow throughout the salamander's body? Did other organisms have them? What structures carried them? What were their electrical properties? What were they doing the rest of the time, before injury and after healing? Could they be used to provoke regeneration where it was normally absent? 

I had ideas about how to look for some of the answers, but, to understand my approach, the reader unfamiliar with electrical terms will need a simplified explanation of several basic concepts that are essential to the rest of the story. 

Everything electrical stems from the phenomenon of charge. No one knows exactly what this is, except to say that it's a fundamental property of matter that exists in two opposite forms, or polarities, which we arbitrarily call positive and negative. Protons, which are one of the two main types of particles in atomic nuclei, are positive; the other particles, the neutrons, are so named because they have no charge. Orbiting around the nucleus are electrons, in the same number as the protons inside the nucleus. 

Although an electron is 1,836 times less massive than a proton, the electron carries an equal but opposite (negative) charge. Because of their lightness and their position outside the nucleus, electrons are much more easily dislodged from atoms than are protons, so they're the main carriers of electric charge. For the lay person's purposes a negative charge can be thought of as a surplus of electrons, while a positive charge can be considered a scarcity of them. When electrons move away from an area, it becomes positively charged, and the area to which they move becomes negative. 

A flow of electrons is called a current, and is measured in amperes, units named for an early-nineteenth-century French physicist, Andre Marie Ampere. A direct current is a more or less even flow, as opposed to the instantaneous discharge of static electricity as sparks or lightning, or the back-and-forth flow of alternating current which powers most of our appliances. 

Besides the amount of charge being moved, a current has another characteristic important for our narrative—its electromotive force. This can be visualized as the "push" behind the current, and it's measured in volts (named for Alessandro Volta). 

In high school most of us learned that a current flows only when a source of electrons (negatively charged material) is connected to a material having fewer free electrons (positively charged in relation to the source) by a conductor, through which the electrons can flow. This is what happens when you connect the negative terminal of a battery to its positive pole with a wire or a radio's innards: You've completed a circuit between negative and positive. If there's no conductor, and hence no circuit, there's only a hypothetical charge flow, or electric potential, between the two areas. The force of this latent current is also measured in volts by temporarily completing the circuit with a recording device, as I did in my experiment. 

The potential can continue to build until a violent burst of current equalizes the charges; this is what happens when lightning strikes. Smaller potentials may remain stable, however. In this case they must be continuously fed by a direct current flowing from positive to negative, the opposite of the normal direction. In this part of a circuit, electrons actually flow from where they're scarce to where they're more abundant. As Volta found, such a flow is generated inside a battery by the electrical interaction of two metals. 

An electric field forms around any electric charge. This means that any other charged object will be attracted (if the polarities are opposite) or repelled (if they're the same) for a certain distance around the first object. The field is the region of space in which an electrical charge can be detected, and it's measured in volts per unit of area. 

Electric fields must be distinguished from magnetic fields. Like charge, magnetism is a dimly understood intrinsic property of matter that manifests itself in two polarities. Any flow of electrons sets up a combined electric and magnetic field around the current, which in turn affects other electrons nearby. Around a direct current the electromagnetic field is stable, whereas an alternating current's field collapses and reappears with its poles reversed every time the current changes direction. This reversal happens sixty times a second in our normal house currents. Just as a current produces a magnetic field, a magnetic field, when it moves in relation to a conductor, induces a current. Any varying magnetic field, like that around household appliances, generates a current in nearby conductors. The weak magnetic fields we'll be discussing are measured in gauss, units named after a nineteenth-century German pioneer in the study of magnetism, Karl Friedrich Gauss. 

Both electric and magnetic fields are really just abstractions that scientists have made up to try to understand electricity's and magnetism's action at a distance, produced by no known intervening material or energy, a phenomenon that used to be considered impossible until it became undeniable. A field is represented by lines of force, another abstraction, to indicate its direction and shape. Both kinds of fields decline with distance, but their influence is technically infinite: Every time you use your toaster, the fields around it perturb charged particles in the farthest galaxies ever so slightly.

In addition, there's a whole universe full of electromagnetic energy, radiation that somehow seems to be both waves in an electromagnetic field and particles at the same time. It exists in a spectrum of wavelengths that includes cosmic rays, gamma rays, X rays, ultraviolet radiation, visible light, infrared radiation, microwaves, and radio waves. Together, electromagnetic fields and energies interact in many complex ways that have given rise to much of the natural world, not to mention the whole technology of electronics. 

You'll need a casual acquaintance with all these terms for the story ahead, but don't worry if the concepts seem a bit murky. Physicists have been trying for generations to solve the fundamental mysteries of electromagnetism, and no one, not even Einstein, has yet succeeded. 

Unpopular Science 
None of these things had the slightest relevance to life, according to most biologists around 1960. A major evaluation of American medicine, financed by the Carnegie Foundation and published in 1910 by the respected educator Abraham Flexner, had denounced the clinical use of electric shocks and currents, which had been applied, often overenthusiastically, to many diseases since the mid-1700s. Electrotherapy sometimes seemed to work, but no one knew why, and it had gotten a bad name from the many charlatans who'd exploited it. Its legitimate proponents had no scientific way to defend it, so the reforms in medical education that followed the Flexner report drove all mention of it from the classroom and clinic, just as the last remnants of belief in vital electricity were being purged from biology by the discovery of acetylcholine. This development dovetailed nicely with expanding knowledge of biochemistry and growing reliance on the drug industry's products. Penicillin later made medicine almost exclusively drug oriented. 

Meanwhile, the work of Faraday, Edison, Marconi, and others literally electrified the world. As the uses of electricity multiplied, no one found any obvious effects on living creatures except for the shock and heating caused by large currents. To be sure, no one looked very hard, for fear of discouraging a growth industry, but the magic of electricity seemed to lie precisely in the way it worked its wonders unseen and unfelt by the folks clustered around the radio or playing cards under the light bulb. By the 1920s, no scientist intent on a respectable career dared suggest that life was in any sense electrical. 

Nevertheless, some researchers kept coming up with observations that didn't fit the prevailing view. Although their work was mostly consigned to the fringes of the scientific community, by the late 1950s they'd accumulated quite a bit of evidence. 

There were two groups of dissenters, but, because their work went unheeded, each was largely unaware of the other's existence. One line of inquiry began just after the turn of the century when it was learned that hydras were electrically polarized. The head was found to be positive, the tail negative. I've already mentioned Frazee's 1909 report of salamander regeneration enhanced by electrical currents. Then, with a classic series of experiments in the early 1920s, Elmer J. Lund of the University of Texas found that the polarity of regeneration in species related to the hydra could be controlled, even reversed, by small direct currents passes through the animal's body. A current strong enough to  override the creature's normal polarity could cause a head to form where a tail should have reappeared, and vice versa. Others confirmed this discovery, and Lund went on to study eggs and embryos. He claimed to have influenced the development of frog eggs not only with currents but also with magnetic fields, a conclusion that was really risque for that time. 

Stimulated by Lund's papers, Harold Saxton Burr of Yale began putting electrodes to all kinds of creatures. Burr was lucky enough to have a forum for his work. He edited the Yale Journal of Biology and Medicine, where most of his reports appeared; few other journals would touch them. Burr and his co-workers found electric fields around, and electric potentials on the surfaces of, organisms as diverse as worms, hydras, salamanders, humans, other mammals, and even slime molds. They measured changes in these potentials and correlated them to growth, regeneration, tumor formation, drug effects, hypnosis, and sleep. Burr claimed to have measured field changes resulting from ovulation, but others got contradictory results. He hooked up his voltmeters to trees for years at a time and found that their fields varied in response not only to light and moisture, but to storms, sunspots, and the phases of the moon as well. 

Burr and Lund were handicapped by their instruments as well as the research climate. Most of their work was done before World War II and, even though Burr spent years designing the most sensitive devices possible using vacuum tubes, the meters were still too "noisy" to reliably measure the tiny currents found in living things. The two scientists could refine their observations only enough to find a simple dipolar distribution of potentials, the head of most animals being negative and the tail positive. 

Burr and Lund advanced similar theories of an electrodynamic field, called by Burr the field of life or L-field, which held the shape of an organism just as a mold determines the shape of a gelatin dessert. "When we meet a friend we have not seen for six months there is not one molecule in his face which was there when we last saw him," Burr wrote. "But, thanks to his controlling L-field, the new molecules have fallen into the old, familiar pattern and we can recognize his face." 

Burr believed that faults in the field could reveal latent illness just as dents in a mold show up in the jelly. He claimed to be able to predict all sorts of things about a person's emotional and physical health, both present and future, merely by checking the voltage between head and hand. His later writings were marred by a son of bioelectric determinism and a tendency to confuse "law and order" in nature with that odious euphemism as preached by Presidents. As a result, he began to suggest his simple readings as a foolproof way to evaluate job applicants, soldiers, mental patients, and suspected criminals or dissidents. 

The fields Burr and Lund found were actually far too simple to account for a salamander's limb or a human face. Biological knowledge at that time gave them no theoretical framework to explain where their fields came from. They conceived of currents flowing within cells but had no proof. They had no inkling that currents might flow in specific tissues or in the fluids outside cells. They suggested that all these little intracellular currents somehow added up to the whole field. Burr wrote that "electrical energy is a fundamental attribute of protoplasm and is an expression or measure of the presence of an electrodynamic field in the organism." 

Unfortunately, an analysis of this sentence yields nonsense, and Burr's work was dismissed as foggy vitalism. Lund suffered the same fate. No one bothered to see if the measurements they'd made were valid. After all, you can disagree with a theory, but you should respect the data enough to check them. If you can't duplicate them, you're entitled to rest easy with your own concepts, but if you get the same results, you're obligated to agree or propose an alternate theory. Most scientists took the easy way out, however, and simply ignored Burr and Lund. Their discoveries remained little known, and most biologists didn't connect them with the tentative morphogenetic-field concept of regeneration. 

Then in 1952 Lund's work was taken up by G. Marsh and H. W. Beams using the planarian. They found that the flatworm's polarity, like the hydra's, could be controlled by passing a current through it. When a direct current was fed in the proper direction through a section of a worm, normal polarity disappeared and a head formed at each end. As the current strength was increased, the section's polarity reversed; a head regrew at the rear, a tail at the front. At higher voltages, even intact worms completely reorganized, with the head becoming a tail and vice versa. Marsh and Beams grew convinced that the animal's electric field was the morphogenetic organizing principle. Still, their work was also ignored, except by Meryl Rose, who suggested that a gradation of electrical charge from front to back controlled the gradient of growth inhibitors and stimulators. He suggested that the growth compounds were charged molecules that were moved to different places in the body by the electric field, depending on the amount and sign of their charge and their molecular weight.  

Undercurrents in Neurology 
While the investigation of the total body field moved haltingly forward in the study of simple animals, several neurophysiologists began finding out odd things about the nerves of more complex creatures, data that Bernstein's action potential couldn't explain. Going through the old literature, following lead after lead from one paper to the next, I found many hints that there were DC potentials in the nervous system and that small currents from outside could affect brain function. 

The first recorded use of currents on the nervous system was by Giovanni Aldini, a nephew of Galvani and an ardent champion of vitalism. Using the batteries of his archenemy Volta, Aldini claimed remarkable success in relieving asthma. He also cured a man who today would probably be diagnosed as schizophrenic, although it's impossible to know how much benefit came from the currents and how much from simple solicitude, then so rare in treating mental illness. Aldini gave his patient a room in his own house and later found him a job. Some of Aldini's experiments were grotesque - he tried to resurrect recently executed criminals by making the corpses twitch with electricity - but his idea that external current could replenish the vital force of exhausted nerves became the rationale for a whole century of electrotherapy.

Modern studies of nerves and current began in 1902, when French researcher Stephane Leduc reported putting animals to sleep by passing fairly strong alternating currents through their heads. He even knocked himself unconscious several times by this method. (Talk about dedication to science!) Several others took up this lead in the 1930s and developed the techniques of electroshock and electronarcosis. The therapeutic value of using large currents to produce convulsions has been questioned more and more, until now it's mostly used to quiet unmanageable psychotics and political nonconformists. Electronarcosis—induction of sleep by passing small currents across the head from temple to temple—is widely used by legitimate therapists in France and the Soviet Union. Russian doctors claim their elektroson technique, which uses electrodes on the eyelids and behind the ears to deliver weak direct currents pulsing at calmative brain-wave frequencies, can impart the benefits of a full night's sleep in two or three hours. There's still much dispute about how both techniques work, but from the outset there was no denying that the currents had a profound effect on the nervous system. 

In the second and third decades of this century there was a flurry of interest in galvanotaxis, the idea that direct currents guided the growth of cells, especially neurons. In 1920, S. Ingvar found that the fibers growing out of nerve cell bodies would align themselves with a nearby flow of current and that the fibers growing toward the negative electrode were different from those growing toward the positive one. Paul Weiss soon "explained" this heretical observation as an artifact caused by stretching of the cell culture substrate due to contact with the electrodes. Even after Marsh and Beams proved Weiss wrong in 1946, it took many more years for the scientific community to accept the fact that neuron fibers do orient themselves along a current flow. Today the possible use of electricity to guide nerve growth is one of the most exciting prospects in regeneration research (see Chapter 11). 

The Bernstein hypothesis, unable to account for these facts, has turned out to be deficient in several other respects. To begin with, according to the theory, an impulse should travel with equal ease in either direction along the nerve fiber. If the nerve is stimulated in the middle, an impulse should travel in both directions to opposite ends. Instead, impulses travel only in one direction; in experiments they can be made to travel "upstream," but only with great difficulty. This may not seem like such a big deal, but it is very significant. Something seems to polarize the nerve. 

Another problem is the fact that, although nerves are essential for regeneration, the action potentials are silent during the process. No impulses have ever been found to be related to regrowth, and neurotransmitters such as acetylcholine have been ruled out as growth stimulators. 

In addition, impulses always have the same magnitude and speed. This may not seem like such a big thing either, but think about it. It means the nerve can carry only one message, like the digital computer's 1 or 0. This is okay for simple things like the knee-jerk reflex. When the doctor's rubber hammer taps your knee, it's actually striking the patellar tendon, giving it a quick stretch. This stimulates stretch receptors (nerve cells in the tendon), which fire a signal to the spinal cord saying, "The patellar tendon has suddenly been stretched." These impulses are received by motor (muscle-activating) neurons in the spinal cord, which send impulses to the large muscle on the front of the thigh, telling it to contract and straighten the leg. In everyday life, the reflex keeps you from falling in a heap if an outside force suddenly bends your knees. 

The digital impulse system accounts for this perfectly well. However, no one can walk on reflexes alone, as victims of cerebral palsy know all too well. The motor activities we take for granted—getting out of a chair and walking across a room, picking up a cup and drinking coffee, and so on—require integration of all the muscles and sensory organs working smoothly together to produce coordinated movements that we don't even have to think about. No one has ever explained how the simple code of impulses can do all that. 

Even more troublesome are the higher processes, such as sight—in which somehow we interpret a constantly changing scene made of innumerable bits of visual data—or the speech patterns, symbol recognition, and grammar of our languages. Heading the list of riddles is the "mind-brain problem" of consciousness, with its recognition, "I am real; I think; I am something special." Then there are abstract thought, memory, personality, creativity, and dreams. The story goes that Otto Loewi had wrestled with the problem of the synapse for a long time without result, when one night he had a dream in which the entire frog-heart experiment was revealed to him. When he awoke, he knew he'd had the dream, but he'd forgotten the details. 

The next night he had the same dream. This time he remembered the procedure, went to his lab in the morning, did the experiment, and solved the problem. The inspiration that seemed to banish neural electricity forever can't be explained by the theory it supported! How do you convert simple digital messages into these complex  phenomena? Latter-day mechanists have simply postulated brain circuitry so intricate that we will probably never figure it out, but some scientists have said there must be other factors. 

Even as Loewi was finishing his work on acetylcholine, others began to find evidence that currents flowed in the nerves. English physiologist Richard Caton had already claimed he'd detected an electric field around the heads of animals in 1875, but it wasn't until 1924 that German psychiatrist Hans Berger proved it by recording the first electroencephalogram (EEG) from platinum wires he inserted into his son's scalp. The EEG provided a record of rhythmic fluctuations in potential voltage over various parts of the head. Berger at first thought there was only one wave from the whole brain, but it soon became clear that the waves differed, depending on where the electrodes were put. Modern EEGs use as many as thirty-two separate channels, all over the head. 

The frequency of these brain waves has been crudely correlated with states of consciousness. Delta waves (0.5 to 3 cycles per second) indicate deep sleep. Theta waves (4 to 8 cycles per second) indicate trance, drowsiness, or light sleep. Alpha waves (8 to 14 cycles per second) appear during relaxed wakefulness or meditation. And beta waves (14 to 35 cycles per second), the most uneven forms, accompany all the modulations of our active everyday consciousness. Underlying these rhythms are potentials that vary much more slowly, over periods as long as several minutes. Today's EEG machines are designed to filter them out because they cause the trace to wander and are considered insignificant anyway. 

There's still no consensus as to where the EEG voltages come from. They would be most easily explained by direct currents, both steady state and pulsing, throughout the brain, but that has been impossible for most biologists to accept. The main alternative theory, that large numbers of neurons firing simultaneously can mimic real electrical activity, has never been proven. 

In 1939, W. E. Burge of the University of Illinois found that the voltage measured between the head and other parts of the body became more negative during physical activity, declined in sleep, and reversed to positive under general anesthesia. At about the same time a group of physiologists and neurologists at Harvard Medical School began studying the brain with a group of MIT mathematicians. This association was destined to change the world. From it came many of our modern concepts of cybernetics, and it became the nucleus of the main American task force on computers in World War II. One of the group's first important ideas was that the brain worked by a combination of analog and digital coding. 

One of the mathematicians, computer pioneer John von Neumann, later elaborated the concept in great detail, but basically it's rather simple. In analog computers, changes in information are expressed by analogous changes in the magnitude or polarity of a current. For example, if the computer is to use and store the varying temperatures of a furnace, the rise and fall in heat can be mimicked by a rise and fall in voltage. Analog systems are slow and can handle only simple information, but they can express subtle variations very well. Digital coding, on the other hand, can transmit enormous amounts of data at high speed, but only if the information can be reduced to yes-no, on-off bits—the digits 1 and 0. 

If the brain was such a hybrid computer, these early cyberneticist reasoned, then analog coding could control the overall activity of large groups of neurons by such actions as increasing or decreasing their sensitivity to incoming messages. (A few years later neurologists did find that some neurons were "tuned" to fire only if they received a certain number of impulses.) The digital system would transfer sensory and motor information, but the processing of that information—memory and recall, thought, and so on—would be accomplished by the synergism of both methods. The voltage changes Burge found in response to major alterations of consciousness seemed to fit within this framework, and his observations were extended by the Harvard-MIT group and others. Much of this work was done directly on the exposed brains of animals and of human patients during surgery. When cooperative patients elected to remain awake during such operations (the brain is immune to pain), human sensations could often be correlated with electrical data. Contributors to this endeavor included nearly all of the greatest American neurophysiologists—Walter B. Cannon, Arturo Rosenblueth, Ralph Gerard, Gilbert Ling, Wilder Penfield, and others. 

Measurements on the exposed brain quickly confirmed the existence of potential voltages and also revealed possible currents of injury. Whenever groups of nerve cells were actively conducting impulses, they also produced a negative potential. Positive potentials appeared from injured cells when the brain had been damaged; these potentials then expanded outward to uninjured cells, suppressing their ability to send or receive impulses. When experimenters applied small negative voltages to groups of neurons, their sensitivity increased; that is, they would generate an impulse in response to a weaker stimulus. Externally applied positive potentials worked in the opposite way: They depressed nerve function, making it harder to produce an impulse. Thus there did seem to be an analog code, but how did it work? Did the potentials come from direct currents generated by the nerve cells themselves, or did they merely result from adding up a lot of action potentials all going in the same direction and arriving in the same place at the same time? 

Some answers were provided by a series of beautiful experiments by Ling, Gerard, and Benjamin Libet at the University of Chicago. Working on frogs, they studied areas of the cortex where the neuron layer was only one cell thick and the cells were arranged side by side like soldiers on review, all pointing in the same direction. In such areas they found a negative potential on the dendrites (the short incoming fibers) and a positive potential at the ends of the axons (the longer outgoing fibers). This indicated a steady direct current along the normal direction of impulse transmission. The entire nerve cell was electrically polarized. 

In another series of experiments, on brains removed from frogs and kept alive in culture, the Chicago group found that direct currents swept across the surface of the cortex in very slow waves, which could be produced experimentally by applying chemicals such as caffeine to a single spot on the surface. When they made a cut on the brain, severing groups of nerve fibers, these DC traveling waves would still cross the cut if the two surfaces were in direct contact. If the researchers held the cut open and filled it with a saline solution that matched body fluids, then the waves couldn't cross the gap. These were particularly important observations. They indicated that the current was transmitted by structures outside the neurons; it crossed the cut when the edges touched, but the microscopic parts of the severed neurons wouldn't have rejoined so easily. The results also showed that the current was not a flow of ions; otherwise it would have been able to cross the gap through the salt water. 

Studying intact brains in living frogs, the lame group found a potential between the front and back of the brain. The olfactory (frontal) lobes were several milivolts negative with respect to the occipital (rear) lobe,  implying a current flowing up the brain stem and between the two hemispheres to the front. 

At the time, these observations seemed mighty odd. They didn't fit any concepts of how the nerves worked. As a result, they were largely ignored. The majority of neurophysiologists went on measuring the action potentials and tracing out fiber pathways in the brain. This was useful work but limited. The basic questions remained. 

Only one research team followed up this work, some ten years later. Sidney Goldring and James L. O'Leary, neuropsychiatrists at the Washington University School of Medicine in St. Louis, recorded the same DC potentials from the human scalp, from the exposed brain during surgery, and from the brains of monkeys and rabbits. As noted before, the potentials varied in regular cycles several minutes long, like a basso continuo under the EEG. In fact, Goldring and O'Leary found waves within waves: "Written upon the slow major swings were lesser voltage changes." These were weak potentials, measured in microvolts (millionths of a volt) and varying in waves of 2 to 30 cycles per minute, sort of a pianissimo "inner voice" in a three-part electrical fugue. 

Conducting in a New Mode 
I was acutely aware that I didn't have the "proper" background for the work I planned to do. I wasn't a professional neurophysiologist; I didn't even know one. Indeed, after my run-in with the research committee, one member had taken me aside and earnestly advised me, "Go back to school and get your Ph.D., Becker. Then you'll learn all of this stuff is nonsense." Still, some of the greatest neurophysiologists had thought the same way I did about "all of this stuff." They suggested we might have been too hasty in throwing electric currents out of biology. My notion of putting them back in wasn't so outlandish, but only an extension of what they'd been saying. 

I was approaching the body's system of information transfer from the periphery, asking, "What makes wounds heal?" They'd started from the center, asking, "How does the brain work?" We were working on the same problem from opposite ends. As I contemplated their findings and all of biology's unsolved problems, I grew convinced that life was more complex than we suspected. I felt that those who reduced life to a mechanical interaction of molecules were living in a cold, gray, dead world, which, despite its drabness, was a fantasy. I didn't think electricity would turn to be any elan vital in the old sense, but I had a hunch would be closer to the secret than the smells of the biochemistry lab or the dissecting room's preserved organs. 

I had another worthy ally when I started to reevaluate the role of electricity in life. Albert Szent-Gyorgyi, who'd already won a Nobel Prize for his work on oxidation and vitamin C, made a stunning suggestion in a speech before the Budapest Academy of Science on March 21, 1941. (Think of the date. World War II was literally exploding around him, and there he was, calmly laying the foundations for a new biology.) Speaking of the mechanistic approach of biochemistry, he pointed out that when experimenters broke living things down into their constituent parts, somewhere along the line life slipped through their fingers and they found themselves working with dead matter. He said, "It looks as if some basic fact about life were still missing, without which any real understanding is impossible." For the missing basic fact, Szent-Gyorgyi proposed putting electricity back into living things, but not in the way it had been thought of at the turn of the century. 

At that earlier time, there had been only two known modes of current conduction, ionic and metallic. Metallic conduction can be visualized as a cloud of electrons moving along the surface of metal, usually a wire. It can be automatically excluded from living creatures because no one has ever found any wires in them. Ionic current is conducted in solutions by the movement of ions—atoms or molecules charged by having more or fewer than the number of electrons needed to balance their protons' positive charges. Since ions are much bigger than electrons, they move more laboriously through the conducting medium, and ionic currents die out after short distances. They work fine across the thin membrane of the nerve fiber, but it would be impossible to sustain an ionic current down the length of even the shortest nerve. 

Semi-conduction, the third kind of current, was a laboratory curiosity in the 1930s. Halfway between conductors and insulators, the semiconductors are inefficient, in the sense that they can carry only small currents, but they can conduct their currents readily over long distances. Without them, modern computers, satellites, and all the rest of our solid-state electronics would be impossible. 

Semi-conduction occurs only in materials having an orderly molecular structure, such as crystals, in which electrons can move easily from the electron cloud around one atomic nucleus to the cloud around another. The atoms in a crystal are arranged in neat geometric lattices, rather than the frozen jumble of ordinary solids. Some crystalline materials have spaces in the lattice where other atoms can fit. The atoms of these impurities may have more or fewer electrons than the atoms of the lattice material. 

Since the forces of the latticework structure hold the same  number of electrons in place around each atom, the "extra" electrons of the impurity atoms are free to move through the lattice without being bound to any particular atom. If the impurity atoms have fewer electrons than the others, the "holes" in their electron clouds can be filled by electrons from other atoms, leaving holes elsewhere. A negative current, or N-type semi-conduction, amounts to the movement of excess electrons; a positive current, or P-type semi-conduction, is the movement of these holes, which can be thought of as positive charges. 

Szent-Gyorgyi pointed out that the molecular structure of many parts of the cell was regular enough to support semi-conduction. This idea was almost completely ignored at the time. Even when Szent-Gyorgyi expanded the concept in his I960 Introduction to a Submolecular Biology, most scientists (except in Russia!) dismissed it as evidence of his advancing age, but that little book was an inspiration to me. I think it may turn out to be the man's most important contribution to science. 

In it he conjectured that protein molecules, each having a sort of slot or way station for mobile electrons, might be joined together in long chains so that electrons could flow in a semiconducting current over long distances without losing energy, much as in a game of checkers one counter could jump along a row of other pieces across the entire board. Szent-Gyorgyi suggested that the electron flow would be similar to photosynthesis, another process he helped elucidate, in which a kind of waterfall of electrons cascaded step by step down a staircase of molecules, losing energy with each bounce. The main difference was that in protein semi-conduction the electrons' energy would be conserved and passed along as information instead of being absorbed and stored in the chemical bonds of food. 

With Szent-Gyorgyi's suggestion in mind, I put together my working hypothesis. I postulated a primitive, analog-coded information system that was closely related to the nerves but not necessarily located in the nerve fibers themselves. I theorized that this system used semiconducting direct currents and that, either alone or in concert with the nerve impulse system, it regulated growth, healing, and perhaps other basic processes. 

Testing the Concept 
The first order of business was to repeat Burr's measurements on salamanders, using modern equipment. I put the reference electrode at the tip of each animal's nose and moved the recording electrode point by point along the center of the body to the tip of the tail, and then out along each limb. I measured voltages on the rest of the body and plotted lines of force connecting all the points where the readings were the same. 

Instead of Burr's simple head-negative and tail-positive form, I found a complex field that followed the arrangement of the nervous system. There were large positive potentials over each lobe of the brain, and slightly smaller ones over the brachial and lumbar nerve ganglia between each pair of limbs. The readings grew increasingly negative as I moved away from these collections of nerve cell bodies; the hands, feet, and tip of the tail had the highest negative potentials. 

In another series of measurements, I watched the potentials develop along with the nervous system in larval salamanders. In the adults, cutting the nerves where they entered the legs—that is, severing the long nerve fibers from their cell bodies in the spinal cord—wiped out the limb potentials almost entirely. But if I cut the spinal cord, leaving the peripheral nerves connected to their cell bodies, the limb potentials didn't change. It certainly looked as though there was a current being generated in the nerve cell bodies and traveling down the fibers. 

To have a current flow you need a circuit; the current has to be made at one spot, pass through a conductor, and eventually get back to the generator. We tend to forget that the 60-cycle alternating current in the  wall socket isn't used up when we turn on a light but is merely coursing through it to the ground, through which it eventually returns to the power station. Since my measurements were positive over collections of nerve cell bodies, and increasingly negative out along the nerve fibers, it seemed a good bet that current was being generated in the cell bodies, especially since they contained all of the "good stuff"—the nucleus, organelles, and metabolic components—while the fibers were relatively uninteresting prolongations of the body. At the time, I supposed the circuit was completed by current going back toward the spine through the muscles. 

This was a good start, but it wasn't scientifically acceptable proof. For one thing, my guess about the return part of the circuit was soon disproved when I measured the limb muscles and found them polarized in the same direction as the surface potentials. For another thing, it had recently been discovered that amphibian skin itself was polarized, inside versus outside, by ion differences much like the nerve membrane's resting potential, so it was just barely possible that my readings had been caused by ionic discharges through the moist skin. If so, my evidence was literally all wet. 

Much of the uncertainty was due to the fact that I was measuring the outside of the animal and assuming that generators and conductors inside were making the pattern I found. I needed a way to relate inner currents to outer potentials. 

This was before transistors had entirely replaced vacuum tubes. A tube's characteristics depended on the structure of the electric field inside it, but to calculate the field parameters in advance without computers was a laborious task, so radio engineers often made an analog model. They built a large mock-up of the tube, filled with a conducting solution. When current was applied to the model, the field could be mapped by measuring the voltage at various points in the solution. I decided to build a model salamander. 

I made an analog of the creature's nervous system out of copper wires. For the brain and nerve ganglia I used blobs of solder. Each junction was thus a voltaic battery of two different metals, copper and the lead-tin alloy of which the solder was made. Then I simply sandwiched this "nervous system" between two pieces of sponge rubber cut in the shape of a salamander, and soaked the model in a salt solution to approximate body fluids and serve as the electrolyte, the conducting solution that would enable the two metals to function as a battery. It worked. The readings were almost exactly the same as in the real salamander. This showed that a direct current inside could produce the potentials I was getting on the outside. 

If my proposed system was really a primitive part of the nervous system, it should be widely distributed, so next I surveyed the whole animal kingdom. I tested flatworms, earthworms, fish, amphibians, reptiles, mammals, and humans. In each species the potentials on the skin reflected the arrangement of the nervous system. In the worms and fish, there was only one area of positive potential, just as there was only one major nerve ganglion, the brain. In humans the entire head and spinal region, with its massive concentration of neurons, was strongly positive. 

The three specific areas of greatest positive potential were the same as in the salamander: the brain, the brachial plexus between the shoulder blades, and the lumbar enlargement at the base of the spinal cord. In all vertebrates I also recorded a midline head potential that suggested a direct current like that postulated by Gerard, flowing from back to front through the middle of the brain. It looked as though the current came from the reticular activating system, a network of crosslinked neurons that fanned out from the brainstem into higher centers  and seemed to control the level of sleep or wakefulness and the focus of attention. 

At the same time, to see whether the current of injury and the surface potentials came from the same source, I made electrical measurements on salamander limbs as they healed fractures. (As mentioned in Chapter 1, bone healing is the only kind of true regeneration common to all vertebrates.) The limb currents behaved like those accompanying regrowth. A positive zone immediately formed around the break, although the rest of the limb retained at least part of its negative potential. Then, between the fifth and tenth days, the positive zone reversed its potential and became more strongly negative than the rest of the limb as the fracture began to heal. 

Next I decided to follow up Burge's experiments of two decades before. I would produce various changes in the state of the nervous system and look for concomitant changes in the electrical measurements. To do this right I really needed a few thousand dollars for an apparatus that could take readings from several electrodes simultaneously and record them side by side on a chart. My chances of getting this money seemed slim unless I could publish another paper fast. I decided to use the equipment I had for a simple measurement during one of the most profound changes in consciousness—anesthesia. 

Burge was right. The electrical responses were dramatic and incontrovertible. As each animal went under, its peripheral voltages dropped to zero, and in very deep anesthesia they reversed to some extent, the limbs and tail going positive. They reverted to normal just before the animal woke up. 

I had enough for a short paper, and I decided to try a journal on medical electronics recently started by the Institute of Radio Engineers. Although most of what they printed was safe and unremarkable, I'd found that engineers were often more open-minded than biologists, so I went for broke; I put in the whole hypothesis—analog nervous system, semiconducting currents, healing control, the works. The editor loved it and sent me an enthusiastic letter of acceptance, along with suggestions for further research. Best of all, I soon got another small grant approved and bought my multi-electrode chart recorder. Soon I had confirmed my anesthesia findings, and with the whole-body monitoring setup I also was able to correlate the entire pattern of surface voltages with the animal's level of activity while not anesthetized. Negative potentials in the brain's frontal area and at the periphery of the nervous system were associated with wakefulness, sensory stimuli, and muscle movements. The more activity, the greater the negative potentials were. A shift toward the positive occurred during rest and even more so during sleep. *
*l didn't know it until later, but another experimenter named H. Caspers made similar findings at about the same time.

In my reading on solid-state electronics I found another way I could test for current in the salamander. Luckily it was cheap and easy; I could do it without buying more equipment. Best of all, it should work only if the current was semiconducting. 

Suppose you think you have a current flowing through some conductor—a salamander's limb, for instance. You put it in a strong magnetic field so that the lines of force cut across the conductor at right angles. Then you place another conductor, containing no current, perpendicular to both the original conductor (the limb) and the magnetic field. If there is a current in whatever you're testing, some of the charge carriers will be deflected by the magnetic field into the other conductor, producing a voltage that you can measure. This is called the Hall voltage, after the gentleman who discovered it. The beauty of it is that it works differently for the three kinds of current. For any given strength of magnetic field, the Hall voltage is proportional to the mobility of the charge carriers. Ions in a solution are relatively big and barely deflected by the field. Electrons in a wire are constrained by the nature of the metal. In both cases the Hall voltage is small and hard to detect. Electrons in semiconductors are very free to move, however, and produce Hall voltages with much weaker fields. 

After finding a C-shaped permanent magnet, an item not much in demand since the advent of electromagnets, I set up the equipment. I took a deep breath as I placed the first anesthetized salamander on its plastic support, with one foreleg extended. I'd placed electrodes so that they touched the limb lightly, one on each side, and I'd mounted the magnet so as to swing in with its poles above and below the limb, close to yet not touching it. I took voltage measurements every few minutes, with the magnet and without it, as the animal regained consciousness. I also measured the DC voltage from the tips of the fingers to the spinal cord. In deep anesthesia, the DC voltage along the limb was zero and so was the Hall voltage. As the anesthetic wore off, the normal potential along the limb gradually appeared, and so did a beautiful Hall voltage. It increased right along with the limb potential, until the animal recovered completely and walked away from the apparatus. The test worked every time, but I don't think I'll ever forget the thrill of watching the pen on the recorder trace out the first of those Hall voltages. 

This experiment demonstrated unequivocally that there was a real electric current flowing along the salamander's foreleg, and it virtually proved that the current was semiconducting. In fact, the half-dozen tests I'd performed supported every point of my hypothesis. 

Scientific results that aren't reported might as well not exist. They're like the sound of one hand clapping. For scientists, communication isn't only a responsibility, it's our chief pleasure. A good result from a clean, beautiful experiment is a joy that you just have to share, and I couldn't wait to see these data in print. I went for the top this time. The journal in American science is aptly named Science. Each issue reports on all fields from astronomy to zoology, so publication means a paper has more than a specialized significance. Mine was accepted, and I was jubilant. 

With three major papers in three major journals after my first year of research, I felt I'd arrived. The world has a way of cutting you down to size, however, and in the science game the method is known as citation. No matter how important your paper is, it doesn't mean anything unless it's cited as a reference in new papers by others and you get a respectable number of requests for reprints. On both counts, I was a failure. I was learning how science treats new ideas that conflict with old ones. 

I didn't stay discouraged long, though. I was doing science for the love of it, not for praise. I felt the concepts emerging from my reading and research were important, and I was passionately committed to testing them. I knew that if the results were ever to change any minds, I would have to be careful not to misinterpret data. In going deeper into the electrical properties of nerves, I realized, I was about to get over my head in an area I really wasn't trained for—physics. I made one of the best decisions of my life; I looked for a collaborator. 

The basic scientists at the State University of New York Upstate Medical Center, the medical school affiliated with the VA hospital, were not only uninterested, they were horrified at what I was doing and wouldn't risk their reputations by becoming associated with me in any way. So, I walked across the street to the physics department of Syracuse University and spoke to the chairman, an astronomer whom I'd met a few years earlier when I volunteered to watch the northern lights during the International Geophysical Year. After a few minutes' thought, he suggested that a guy on the third floor named Charlie Bachman might be "as crazy as you," and wished me luck. 

The instant I opened the door, I knew I was in the right place. There was Charlie, bent over a workbench with an electromagnet and a live frog. 

next-88s
The Circuit of Awareness 

FAIR USE NOTICE
This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. As a journalist, I am making such material available in my efforts to advance understanding of artistic, cultural, historic, religious and political issues. I believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law.

In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. Copyrighted material can be removed on the request of the owner.   

No comments:

Part 1 Windswept House A VATICAN NOVEL....History as Prologue: End Signs

Windswept House A VATICAN NOVEL  by Malachi Martin History as Prologue: End Signs  1957   DIPLOMATS schooled in harsh times and in the tough...